Harmonic oscillator partition function from the path integral

September 11, 2018

We take the Euclidean action to be $\dot{X}^{2} / 2+E^{2} X^{2} / 2$. Directly using the energy spectrum, we can compute the partition function:

$$
\begin{aligned}
Z_{\mathrm{ho}}(\beta) & =e^{-\beta E / 2}+e^{-3 \beta E / 2}+\ldots \\
& =\frac{1}{2 \sinh \beta E / 2}
\end{aligned}
$$

To connect to the path integral language, we write this in a more suggestive way using the infinite product formula for sinh.

$$
\begin{align*}
Z_{\mathrm{ho}}(\beta)=\frac{1}{2 \sinh \beta E / 2} & =\frac{1}{\beta E} \prod_{n=1}^{\infty}\left(1+\frac{\beta^{2} E^{2}}{4 \pi^{2} n^{2}}\right)^{-1} \\
& =\frac{1}{\beta E} \prod_{n=1}^{\infty} \frac{\omega_{n}^{2}}{\omega_{n}^{2}+E^{2}} . \tag{1}
\end{align*}
$$

In the the path integral language, the terms with $n \neq 0$ in the infinite product come from the nonzero Matsubara modes (after dividing by the answer for the free particle with $E=0$). The only thing left to explain is why the $n=0$ mode gives $1 /(\beta E)$. The path integral weight for the $n=0$ mode is

$$
\exp -\beta \times \frac{1}{2} E^{2} X_{0}^{2}
$$

Integrating this over X_{0} will give $\sqrt{2 \pi / \beta E^{2}}$. Thus the $1 / E$ comes out correct, but the factor of 2π and β needs to be fixed.

The trouble with the $n=0$ mode is that we cannot figure out the proper measure factor multiplying $d X_{0}$ by comparing it to the free answer because the zero mode when $E=0$ is not Gaussian suppressed, and gives ∞. One nice way to fix this is to consider the real-time propagator
for the free particle which is given by

$$
\left\langle x_{f}\right| e^{-i H_{\text {free }} t}\left|x_{i}\right\rangle=\sqrt{\frac{1}{2 \pi i t}} \exp -\frac{\left(x_{f}-x_{i}\right)^{2}}{2 i t}
$$

The prefactor here is fixed by the requirement that as $t \rightarrow 0$, the propagator must approach $\delta\left(x_{f}-x_{i}\right)$. To go to Euclidean signature, we have to replace it with β. In order to get the partition function, we have to take the trace. This involves setting $x_{f}=x_{i}$, which gets rid of the exponential factor. The integral over x gives the divergence proportional to the "volume of the target space".

$$
Z_{\text {free }}(\beta)=\frac{1}{\sqrt{2 \pi \beta}} \times(\operatorname{vol} X)
$$

This means that

$$
\begin{aligned}
\left(\int d X_{0}\right) \prod_{n>0} \frac{1}{\omega_{n}^{2}} & =\frac{1}{\sqrt{2 \pi \beta}} \times(\operatorname{vol} X), \quad \text { or } \\
1 & =\frac{1}{\sqrt{2 \pi \beta}} \prod_{n>0} \omega_{n}^{2}
\end{aligned}
$$

We take the naive answer for the harmonic oscillator and 'insert one':

$$
\begin{aligned}
Z_{\mathrm{ho}}(\beta) & =\sqrt{\frac{2 \pi}{\beta E^{2}}} \prod_{n>0} \frac{1}{\omega_{n}^{2}+E^{2}} \\
& =\sqrt{\frac{2 \pi}{\beta E^{2}}} \frac{1}{\sqrt{2 \pi \beta}} \prod_{n>0} \frac{\omega_{n}^{2}}{\omega_{n}^{2}+E^{2}} .
\end{aligned}
$$

The last expression is precisely what was needed, see (1).

