Harmonic oscillator partition function from the path integral
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We take the Euclidean action to be X2/2 + E%2X?/2. Directly using the energy spectrum, we

can compute the partition function:
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To connect to the path integral language, we write this in a more suggestive way using the infinite

product formula for sinh.
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In the the path integral language, the terms with n # 0 in the infinite product come from the
nonzero Matsubara modes (after dividing by the answer for the free particle with £ = 0). The only
thing left to explain is why the n = 0 mode gives 1/(SE). The path integral weight for the n = 0

mode is
R
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Integrating this over X, will give /27 /BE?. Thus the 1/FE comes out correct, but the factor of 27

and S needs to be fixed.

The trouble with the n = 0 mode is that we cannot figure out the proper measure factor
multiplying dXo by comparing it to the free answer because the zero mode when E = 0 is not

Gaussian suppressed, and gives co. One nice way to fix this is to consider the real-time propagator



for the free particle which is given by
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The prefactor here is fixed by the requirement that as ¢ — 0, the propagator must approach

d(x ¢ — ;). To go to Euclidean signature, we have to replace it with 3. In order to get the partition
function, we have to take the trace. This involves setting xy = x;, which gets rid of the exponential

factor. The integral over x gives the divergence proportional to the “volume of the target space”.

Ztree(B) = x (vol X).
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This means that
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We take the naive answer for the harmonic oscillator and ‘insert one’:
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The last expression is precisely what was needed, see (1).




